CAP理论概述

一个分布式系统最多只能同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance)这三项中的两项。

cap

CAP的定义

Consistency 一致性

一致性指“all nodes see the same data at the same time”,即更新操作成功并返回客户端完成后,所有节点在同一时间的数据完全一致。分布式的一致性

对于一致性,可以分为从客户端和服务端两个不同的视角。从客户端来看,一致性主要指的是多并发访问时更新过的数据如何获取的问题。从服务端来看,则是更新如何复制分布到整个系统,以保证数据最终一致。一致性是因为有并发读写才有的问题,因此在理解一致性的问题时,一定要注意结合考虑并发读写的场景。

从客户端角度,多进程并发访问时,更新过的数据在不同进程如何获取的不同策略,决定了不同的一致性。对于关系型数据库,要求更新过的数据能被后续的访问都能看到,这是强一致性。如果能容忍后续的部分或者全部访问不到,则是弱一致性。如果经过一段时间后要求能访问到更新后的数据,则是最终一致性。

Availability 可用性

可用性指“Reads and writes always succeed”,即服务一直可用,而且是正常响应时间。

对于一个可用性的分布式系统,每一个非故障的节点必须对每一个请求作出响应。也就是,该系统使用的任何算法必须最终终止。当同时要求分区容忍性时,这是一个很强的定义:即使是严重的网络错误,每个请求必须终止。

好的可用性主要是指系统能够很好的为用户服务,不出现用户操作失败或者访问超时等用户体验不好的情况。可用性通常情况下可用性和分布式数据冗余,负载均衡等有着很大的关联。

Partition Tolerance分区容错性

分区容错性指“the system continues to operate despite arbitrary message loss or failure of part of the system”,即分布式系统在遇到某节点或网络分区故障的时候,仍然能够对外提供满足一致性和可用性的服务。

分区容错性和扩展性紧密相关。在分布式应用中,可能因为一些分布式的原因导致系统无法正常运转。好的分区容错性要求能够使应用虽然是一个分布式系统,而看上去却好像是在一个可以运转正常的整体。比如现在的分布式系统中有某一个或者几个机器宕掉了,其他剩下的机器还能够正常运转满足系统需求,或者是机器之间有网络异常,将分布式系统分隔未独立的几个部分,各个部分还能维持分布式系统的运作,这样就具有好的分区容错性。

CAP的证明

intro_thumb

如上图,是我们证明CAP的基本场景,网络中有两个节点N1和N2,可以简单的理解N1和N2分别是两台计算机,他们之间网络可以连通,N1中有一个应用程序A,和一个数据库V,N2也有一个应用程序B2和一个数据库V。现在,A和B是分布式系统的两个部分,V是分布式系统的数据存储的两个子数据库。

在满足一致性的时候,N1和N2中的数据是一样的,V0=V0。在满足可用性的时候,用户不管是请求N1或者N2,都会得到立即响应。在满足分区容错性的情况下,N1和N2有任何一方宕机,或者网络不通的时候,都不会影响N1和N2彼此之间的正常运作。

scenario1_thumb

如上图,是分布式系统正常运转的流程,用户向N1机器请求数据更新,程序A更新数据库Vo为V1,分布式系统将数据进行同步操作M,将V1同步的N2中V0,使得N2中的数据V0也更新为V1,N2中的数据再响应N2的请求。

这里,可以定义N1和N2的数据库V之间的数据是否一样为一致性;外部对N1和N2的请求响应为可用行;N1和N2之间的网络环境为分区容错性。这是正常运作的场景,也是理想的场景,然而现实是残酷的,当错误发生的时候,一致性和可用性还有分区容错性,是否能同时满足,还是说要进行取舍呢?

作为一个分布式系统,它和单机系统的最大区别,就在于网络,现在假设一种极端情况,N1和N2之间的网络断开了,我们要支持这种网络异常,相当于要满足分区容错性,能不能同时满足一致性和响应性呢?还是说要对他们进行取舍。

scenario2_thumb

假设在N1和N2之间网络断开的时候,有用户向N1发送数据更新请求,那N1中的数据V0将被更新为V1,由于网络是断开的,所以分布式系统同步操作M,所以N2中的数据依旧是V0;这个时候,有用户向N2发送数据读取请求,由于数据还没有进行同步,应用程序没办法立即给用户返回最新的数据V1,怎么办呢?有二种选择,第一,牺牲数据一致性,响应旧的数据V0给用户;第二,牺牲可用性,阻塞等待,直到网络连接恢复,数据更新操作M完成之后,再给用户响应最新的数据V1。

这个过程,证明了要满足分区容错性的分布式系统,只能在一致性和可用性两者中,选择其中一个。

CAP权衡

通过CAP理论,我们知道无法同时满足一致性、可用性和分区容错性这三个特性,那要舍弃哪个呢?

CA without P:如果不要求P(不允许分区),则C(强一致性)和A(可用性)是可以保证的。但其实分区不是你想不想的问题,而是始终会存在,因此CA的系统更多的是允许分区后各子系统依然保持CA。

CP without A:如果不要求A(可用),相当于每个请求都需要在Server之间强一致,而P(分区)会导致同步时间无限延长,如此CP也是可以保证的。很多传统的数据库分布式事务都属于这种模式。

AP wihtout C:要高可用并允许分区,则需放弃一致性。一旦分区发生,节点之间可能会失去联系,为了高可用,每个节点只能用本地数据提供服务,而这样会导致全局数据的不一致性。现在众多的NoSQL都属于此类。

对于多数大型互联网应用的场景,主机众多、部署分散,而且现在的集群规模越来越大,所以节点故障、网络故障是常态,而且要保证服务可用性达到N个9,即保证P和A,舍弃C(退而求其次保证最终一致性)。虽然某些地方会影响客户体验,但没达到造成用户流程的严重程度。

对于涉及到钱财这样不能有一丝让步的场景,C必须保证。网络发生故障宁可停止服务,这是保证CA,舍弃P。貌似这几年国内银行业发生了不下10起事故,但影响面不大,报到也不多,广大群众知道的少。还有一种是保证CP,舍弃A。例如网络故障事只读不写。

孰优孰略,没有定论,只能根据场景定夺,适合的才是最好的。

BASE理论

eBay的架构师Dan Pritchett源于对大规模分布式系统的实践总结,在ACM上发表文章提出BASE理论,BASE理论是对CAP理论的延伸,核心思想是即使无法做到强一致性(Strong Consistency,CAP的一致性就是强一致性),但应用可以采用适合的方式达到最终一致性(Eventual Consitency)。

BASE是指基本可用(Basically Available)、软状态( Soft State)、最终一致性( Eventual Consistency)。

基本可用(Basically Available)

基本可用是指分布式系统在出现故障的时候,允许损失部分可用性,即保证核心可用。

电商大促时,为了应对访问量激增,部分用户可能会被引导到降级页面,服务层也可能只提供降级服务。这就是损失部分可用性的体现。

软状态( Soft State)

软状态是指允许系统存在中间状态,而该中间状态不会影响系统整体可用性。分布式存储中一般一份数据至少会有三个副本,允许不同节点间副本同步的延时就是软状态的体现。mysql replication的异步复制也是一种体现。

最终一致性( Eventual Consistency)

最终一致性是指系统中的所有数据副本经过一定时间后,最终能够达到一致的状态。弱一致性和强一致性相反,最终一致性是弱一致性的一种特殊情况。

ACID和BASE的区别与联系

ACID是传统数据库常用的设计理念,追求强一致性模型。BASE支持的是大型分布式系统,提出通过牺牲强一致性获得高可用性。

ACID和BASE代表了两种截然相反的设计哲学

在分布式系统设计的场景中,系统组件对一致性要求是不同的,因此ACID和BASE又会结合使用。